Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 227
Filter
1.
Article in English | MEDLINE | ID: mdl-38593870

ABSTRACT

BACKGROUND: Sialic acid-binding immunoglobulin-like lectin-3 (Siglec-3 [CD33]) is a major Siglec expressed on human mast cells and basophils; engagement of CD33 leads to inhibition of cellular signaling via immunoreceptor tyrosine-based inhibitory motifs. OBJECTIVE: We sought to inhibit human basophil degranulation by simultaneously recruiting inhibitory CD33 to the IgE-FcεRI complex by using monoclonal anti-IgE directly conjugated to CD33 ligand (CD33L). METHODS: Direct and indirect basophil activation tests (BATs) were used to assess both antigen-specific (peanut) and antigen-nonspecific (polyclonal anti-IgE) stimulation. Whole blood from donors with allergy was used for direct BAT, whereas blood from donors with nonfood allergy was passively sensitized with plasma from donors with peanut allergy in the indirect BAT. Blood was incubated with anti-IgE-CD33L or controls for 1 hour or overnight and then stimulated with peanut, polyclonal anti-IgE, or N-formylmethionyl-leucyl-phenylalanine for 30 minutes. Degranulation was determined by measuring CD63 expression on the basophil surface by flow cytometry. RESULTS: Incubation for 1 hour with anti-IgE-CD33L significantly reduced basophil degranulation after both allergen-induced (peanut) and polyclonal anti-IgE stimulation, with further suppression after overnight incubation with anti-IgE-CD33L. As expected, anti-IgE-CD33L did not block basophil degranulation due to N-formylmethionyl-leucyl-phenylalanine, providing evidence that this inhibition is IgE pathway-specific. Finally, CD33L is necessary for this suppression, as monoclonal anti-IgE without CD33L was unable to reduce basophil degranulation. CONCLUSIONS: Pretreating human basophils with anti-IgE-CD33L significantly suppressed basophil degranulation through the IgE-FcεRI complex. The ability to abrogate IgE-mediated basophil degranulation is of particular interest, as treatment with anti-IgE-CD33L before antigen exposure could have broad implications for the treatment of food, drug, and environmental allergies.

2.
Nat Commun ; 15(1): 3449, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664384

ABSTRACT

In 2017, a novel influenza A virus (IAV) was isolated from an Egyptian fruit bat. In contrast to other bat influenza viruses, the virus was related to avian A(H9N2) viruses and was probably the result of a bird-to-bat transmission event. To determine the cross-species spill-over potential, we biologically characterize features of A/bat/Egypt/381OP/2017(H9N2). The virus has a pH inactivation profile and neuraminidase activity similar to those of human-adapted IAVs. Despite the virus having an avian virus-like preference for α2,3 sialic acid receptors, it is unable to replicate in male mallard ducks; however, it readily infects ex-vivo human respiratory cell cultures and replicates in the lungs of female mice. A/bat/Egypt/381OP/2017 replicates in the upper respiratory tract of experimentally-infected male ferrets featuring direct-contact and airborne transmission. These data suggest that the bat A(H9N2) virus has features associated with increased risk to humans without a shift to a preference for α2,6 sialic acid receptors.


Subject(s)
Chiroptera , Ducks , Ferrets , Influenza A Virus, H9N2 Subtype , Orthomyxoviridae Infections , Receptors, Cell Surface , Animals , Chiroptera/virology , Humans , Ferrets/virology , Female , Male , Influenza A Virus, H9N2 Subtype/physiology , Influenza A Virus, H9N2 Subtype/pathogenicity , Influenza A Virus, H9N2 Subtype/isolation & purification , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/transmission , Mice , Ducks/virology , Virus Replication , Influenza, Human/virology , Influenza, Human/transmission , Lung/virology , Influenza in Birds/virology , Influenza in Birds/transmission , Neuraminidase/metabolism
3.
Cell Host Microbe ; 32(2): 261-275.e4, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38307019

ABSTRACT

Hemagglutinins (HAs) from human influenza viruses descend from avian progenitors that bind α2-3-linked sialosides and must adapt to glycans with α2-6-linked sialic acids on human airway cells to transmit within the human population. Since their introduction during the 1968 pandemic, H3N2 viruses have evolved over the past five decades to preferentially recognize human α2-6-sialoside receptors that are elongated through addition of poly-LacNAc. We show that more recent H3N2 viruses now make increasingly complex interactions with elongated receptors while continuously selecting for strains maintaining this phenotype. This change in receptor engagement is accompanied by an extension of the traditional receptor-binding site to include residues in key antigenic sites on the surface of HA trimers. These results help explain the propensity for selection of antigenic variants, leading to vaccine mismatching, when H3N2 viruses are propagated in chicken eggs or cells that do not contain such receptors.


Subject(s)
Influenza A Virus, H3N2 Subtype , Influenza, Human , Animals , Humans , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/metabolism , Receptors, Virus/chemistry , Sialic Acids/metabolism , Polysaccharides/metabolism , Chickens , Hemagglutinin Glycoproteins, Influenza Virus
4.
ACS Chem Biol ; 19(2): 483-496, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38321945

ABSTRACT

Human sialic-acid-binding immunoglobulin-like lectin-9 (Siglec-9) is a glycoimmune checkpoint receptor expressed on several immune cells. Binding of Siglec-9 to sialic acid containing glycans (sialoglycans) is well documented to modulate its functions as an inhibitory receptor. Here, we first assigned the amino acid backbone of the Siglec-9 V-set domain (Siglec-9d1), using well-established triple resonance three-dimensional nuclear magnetic resonance (NMR) methods. Then, we combined solution NMR and molecular dynamic simulation methods to decipher the molecular details of the interaction of Siglec-9 with the natural ligands α2,3 and α2,6 sialyl lactosamines (SLN), sialyl Lewis X (sLeX), and 6-O sulfated sLeX and with two synthetically modified sialoglycans that bind with high affinity. As expected, Neu5Ac is accommodated between the F and G ß-strands at the canonical sialic acid binding site. Addition of a heteroaromatic scaffold 9N-5-(2-methylthiazol-4-yl)thiophene sulfonamide (MTTS) at the C9 position of Neu5Ac generates new interactions with the hydrophobic residues located at the G-G' loop and the N-terminal region of Siglec-9. Similarly, the addition of the aromatic substituent (5-N-(1-benzhydryl-1H-1,2,3-triazol-4-yl)methyl (BTC)) at the C5 position of Neu5Ac stabilizes the conformation of the long and flexible B'-C loop present in Siglec-9. These results expose the underlying mechanism responsible for the enhanced affinity and specificity for Siglec-9 for these two modified sialoglycans and sheds light on the rational design of the next generation of modified sialoglycans targeting Siglec-9.


Subject(s)
Molecular Dynamics Simulation , N-Acetylneuraminic Acid , Humans , Antigens, Differentiation, Myelomonocytic/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Polysaccharides/metabolism , Magnetic Resonance Spectroscopy , Ligands
5.
Nat Commun ; 14(1): 6178, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37794004

ABSTRACT

Evolution of human H3N2 influenza viruses driven by immune selection has narrowed the receptor specificity of the hemagglutinin (HA) to a restricted subset of human-type (Neu5Acα2-6 Gal) glycan receptors that have extended poly-LacNAc (Galß1-4GlcNAc) repeats. This altered specificity has presented challenges for hemagglutination assays, growth in laboratory hosts, and vaccine production in eggs. To assess the impact of extended glycan receptors on virus binding, infection, and growth, we have engineered N-glycan extended (NExt) cell lines by overexpressing ß3-Ν-acetylglucosaminyltransferase 2 in MDCK, SIAT, and hCK cell lines. Of these, SIAT-NExt cells exhibit markedly increased binding of H3 HAs and susceptibility to infection by recent H3N2 virus strains, but without impacting final virus titers. Glycome analysis of these cell lines and allantoic and amniotic egg membranes provide insights into the importance of extended glycan receptors for growth of recent H3N2 viruses and relevance to their production for cell- and egg-based vaccines.


Subject(s)
Influenza Vaccines , Influenza, Human , Animals , Dogs , Humans , Influenza, Human/prevention & control , Influenza A Virus, H3N2 Subtype , Madin Darby Canine Kidney Cells , Polysaccharides/metabolism , Hemagglutinin Glycoproteins, Influenza Virus
6.
bioRxiv ; 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37214937

ABSTRACT

Since >3 years, SARS-CoV-2 has plunged humans into a colossal pandemic. Henceforth, multiple waves of infection have swept through the human population, led by variants that were able to partially evade acquired immunity. The co-evolution of SARS-CoV-2 variants with human immunity provides an excellent opportunity to study the interaction between viral pathogens and their human hosts. The heavily N-glycosylated spike-protein of SARS-CoV-2 plays a pivotal role in initiating infection and is the target for host immune-response, both of which are impacted by host-installed N-glycans. Using highly-sensitive DeGlyPHER approach, we compared the N-glycan landscape on spikes of the SARS-CoV-2 Wuhan-Hu-1 strain to seven WHO-defined variants of concern/interest, using recombinantly expressed, soluble spike-protein trimers, sharing same stabilizing-mutations. We found that N-glycan processing is conserved at most sites. However, in multiple variants, processing of N-glycans from high mannose- to complex-type is reduced at sites N165, N343 and N616, implicated in spike-protein function.

7.
JACS Au ; 3(3): 868-878, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37006776

ABSTRACT

Influenza virus infection remains a threat to human health since viral hemagglutinins are constantly drifting, escaping infection and vaccine-induced antibody responses. Viral hemagglutinins from different viruses display variability in glycan recognition. In this context, recent H3N2 viruses have specificity for α2,6 sialylated branched N-glycans with at least three N-acetyllactosamine units (tri-LacNAc). In this work, we combined glycan arrays and tissue binding analyses with nuclear magnetic resonance experiments to characterize the glycan specificity of a family of H1 variants, including the one responsible for the 2009 pandemic outbreak. We also analyzed one engineered H6N1 mutant to understand if the preference for tri-LacNAc motifs could be a general trend in human-type receptor-adapted viruses. In addition, we developed a new NMR approach to perform competition experiments between glycans with similar compositions and different lengths. Our results point out that pandemic H1 viruses differ from previous seasonal H1 viruses by a strict preference for a minimum of di-LacNAc structural motifs.

8.
Methods Enzymol ; 682: 137-185, 2023.
Article in English | MEDLINE | ID: mdl-36948700

ABSTRACT

Traditional mass spectrometry-based glycoproteomic approaches have been widely used for site-specific N-glycoform analysis, but a large amount of starting material is needed to obtain sampling that is representative of the vast diversity of N-glycans on glycoproteins. These methods also often include a complicated workflow and very challenging data analysis. These limitations have prevented glycoproteomics from being adapted to high-throughput platforms, and the sensitivity of the analysis is currently inadequate for elucidating N-glycan heterogeneity in clinical samples. Heavily glycosylated spike proteins of enveloped viruses, recombinantly expressed as potential vaccines, are prime targets for glycoproteomic analysis. Since the immunogenicity of spike proteins may be impacted by their glycosylation patterns, site-specific analysis of N-glycoforms provides critical information for vaccine design. Using recombinantly expressed soluble HIV Env trimer, we describe DeGlyPHER, a modification of our previously reported sequential deglycosylation strategy to yield a "single-pot" process. DeGlyPHER is an ultrasensitive, simple, rapid, robust, and efficient approach for site-specific analysis of protein N-glycoforms, that we developed for analysis of limited quantities of glycoproteins.


Subject(s)
Glycoproteins , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/metabolism , Glycoproteins/metabolism , Glycosylation , Polysaccharides/metabolism , Mass Spectrometry
9.
JACS Au ; 3(1): 204-215, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36711084

ABSTRACT

Human sialic acid binding immunoglobulin-like lectin-8 (Siglec-8) is an inhibitory receptor that triggers eosinophil apoptosis and can inhibit mast cell degranulation when engaged by specific monoclonal antibodies (mAbs) or sialylated ligands. Thus, Siglec-8 has emerged as a critical negative regulator of inflammatory responses in diverse diseases, such as allergic airway inflammation. Herein, we have deciphered the molecular recognition features of the interaction of Siglec-8 with the mAb lirentelimab (2C4, under clinical development) and with a sialoside mimetic with the potential to suppress mast cell degranulation. The three-dimensional structure of Siglec-8 and the fragment antigen binding (Fab) portion of the anti-Siglec-8 mAb 2C4, solved by X-ray crystallography, reveal that 2C4 binds close to the carbohydrate recognition domain (V-type Ig domain) on Siglec-8. We have also deduced the binding mode of a high-affinity analogue of its sialic acid ligand (9-N-napthylsufonimide-Neu5Ac, NSANeuAc) using a combination of NMR spectroscopy and X-ray crystallography. Our results show that the sialoside ring of NSANeuAc binds to the canonical sialyl binding pocket of the Siglec receptor family and that the high affinity arises from the accommodation of the NSA aromatic group in a nearby hydrophobic patch formed by the N-terminal tail and the unique G-G' loop. The results reveal the basis for the observed high affinity of this ligand and provide clues for the rational design of the next generation of Siglec-8 inhibitors. Additionally, the specific interactions between Siglec-8 and the N-linked glycans present on the high-affinity receptor FcεRIα have also been explored by NMR.

10.
Mol Aspects Med ; 90: 101140, 2023 04.
Article in English | MEDLINE | ID: mdl-36055802

ABSTRACT

Autoimmune diseases affect tens of millions of people just in the United States alone. Most of the available treatment options are aimed at reducing symptoms but do not lead to cures. Individuals affected with autoimmune diseases suffer from the imbalance between tolerogenic and immunogenic functions of their immune system. Often pathogenesis is mediated by autoreactive B and T cells that escape central tolerance and react against self-antigens attacking healthy tissues in the body. In recent years Siglecs, sialic-acid-binding immunoglobulin (Ig)-like lectins, have gained attention as immune checkpoints for therapeutic interventions to dampen excessive immune responses and to restore immune tolerance in autoimmune diseases. Many Siglecs function as inhibitory receptors suppressing activation signals in various immune cells through binding to sialic acid ligands as signatures of self. In this review, we highlight potential of Siglecs in suppressing immune responses causing autoimmune diseases. In particular, we cover the roles of CD22 and Siglec-G/Siglec-10 in regulating autoreactive B cell responses. We discuss several functions of Siglec-10 in the immune modulation of other immune cells, and the potential of therapeutic strategies for restoring immune tolerance by targeting Siglecs and expanding regulatory T cells. Finally, we briefly review efforts evaluating Siglec-based biomarkers to monitor autoimmune diseases.


Subject(s)
Autoimmune Diseases , Sialic Acid Binding Immunoglobulin-like Lectins , Humans , Sialic Acid Binding Immunoglobulin-like Lectins/genetics , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Sialic Acid Binding Ig-like Lectin 2/metabolism , B-Lymphocytes/metabolism , Autoimmune Diseases/therapy , Autoimmune Diseases/metabolism , N-Acetylneuraminic Acid/metabolism
11.
ACS Nano ; 16(12): 20206-20221, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36418226

ABSTRACT

Autoimmune diseases affect over 4% of the world's population. Treatments are generally palliative or use broad spectrum immunosuppressants to reduce symptoms and disease progression. In some diseases, antibodies generated to a single autoantigen are the major cause of pathogenic inflammation, suggesting that treatments to induce tolerance to the autoantigen could be therapeutic. Here we report the development of hybrid nanoparticles (NPs) that induce tolerance in both T cells and B cells. The NPs comprise a lipid monolayer encapsulating a PLGA core loaded with rapamycin that promotes development of regulatory T cells (Tregs). The lipid monolayer displays the protein antigen and a ligand of the B cell inhibitory co-receptor CD22 (CD22L) that act together to suppress activation of B cells recognizing the antigen. We demonstrate that the hybrid NPs decorated with ovalbumin (OVA) elicit tolerance to OVA in naïve mice, as judged by low OVA-specific antibody titers after the challenge. In the K/BxN mouse model of rheumatoid arthritis caused by B and T cell-dependent responses to the self-antigen glucose-6-phosphate-isomerase (GPI), we show that GPI hybrid NPs delay development of disease, with some treated mice remaining arthritis-free for 300 days. We provide evidence that the mechanism of rheumatoid arthritis suppression involves induction of B cell tolerance, as measured by low anti-GPI antibodies and decreased plasma cell populations, and T cell tolerance, as measured by increased Tregs. The results show the potential of this versatile NP platform for inducing immune tolerance to a self-antigen and suppressing autoimmune disease.


Subject(s)
Arthritis, Rheumatoid , Autoimmune Diseases , Nanoparticles , Mice , Animals , Autoantigens , Polylactic Acid-Polyglycolic Acid Copolymer , Immune Tolerance , Arthritis, Rheumatoid/drug therapy , Lipids , Ovalbumin
12.
Immunity ; 55(11): 2149-2167.e9, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36179689

ABSTRACT

Broadly neutralizing antibodies (bnAbs) to the HIV envelope (Env) V2-apex region are important leads for HIV vaccine design. Most V2-apex bnAbs engage Env with an uncommonly long heavy-chain complementarity-determining region 3 (HCDR3), suggesting that the rarity of bnAb precursors poses a challenge for vaccine priming. We created precursor sequence definitions for V2-apex HCDR3-dependent bnAbs and searched for related precursors in human antibody heavy-chain ultradeep sequencing data from 14 HIV-unexposed donors. We found potential precursors in a majority of donors for only two long-HCDR3 V2-apex bnAbs, PCT64 and PG9, identifying these bnAbs as priority vaccine targets. We then engineered ApexGT Env trimers that bound inferred germlines for PCT64 and PG9 and had higher affinities for bnAbs, determined cryo-EM structures of ApexGT trimers complexed with inferred-germline and bnAb forms of PCT64 and PG9, and developed an mRNA-encoded cell-surface ApexGT trimer. These methods and immunogens have promise to assist HIV vaccine development.


Subject(s)
AIDS Vaccines , HIV Infections , HIV-1 , Humans , Broadly Neutralizing Antibodies , HIV Antibodies , env Gene Products, Human Immunodeficiency Virus , Antibodies, Neutralizing , Complementarity Determining Regions/genetics , HIV Infections/prevention & control
13.
J Allergy Clin Immunol ; 150(6): 1476-1485.e4, 2022 12.
Article in English | MEDLINE | ID: mdl-35839842

ABSTRACT

BACKGROUND: Circulating IgE and subsequent severe allergic reactions to peanut are sustained and propagated by recall of peanut allergen-specific memory B cells. OBJECTIVES: This study aimed to determine whether targeting mouse and human CD22 on peanut-specific memory B cells induces tolerance to peanut allergens. METHODS: Siglec-engaging tolerance-inducing antigenic liposomes (STALs) codisplaying peanut allergens (Ara h 1, Ara h 2, or Ara h 3) and high-affinity CD22 ligand (CD22L-STALs) were employed in various mouse models (BALB/cJ, C57BL/6, human CD22 transgenic, and NSG) of peanut allergy. To investigate memory B cells, a conferred memory model was used in which splenocytes from peanut-sensitized mice were transferred into naive animals. Reconstituted mice received either CD22L-STALs or an immunogenic liposome control, followed by a peanut allergen boost and later a challenge with individual peanut allergens. To assess the effects of CD22L-STALs on human B cells, PBMCs were injected into NSG mice, followed by administration of human CD22L-STALs (hCD22L-STALs) and later a whole peanut extract boost. Blood was collected to quantify WPE- and Ara h 1-, 2-, and 3-specific immunoglobulins. RESULTS: Mouse CD22L-STALs (mCD22L-STALs) significantly suppressed systemic memory to Ara h 1, Ara h 2, and Ara h 3 in BALB/cJ and C57BL/6 mice, as demonstrated by reduced allergen-specific IgE, IgG1, and anaphylaxis on challenge. Importantly, 2 doses of mCD22L-STALs led to prolonged tolerance for at least 3 months. hCD22L-STALs displayed similar suppression in mice expressing human CD22 on B cells. Finally, human B cells were tolerized in vivo in NSG mice by hCD22L-STALs. CONCLUSIONS: Antigen-specific exploitation of CD22 on memory B cells can induce systemic immune tolerance.


Subject(s)
Allergens , Arachis , Humans , Mice , Animals , Mice, Inbred C57BL , Memory B Cells , Immune Tolerance , Sialic Acid Binding Ig-like Lectin 2
14.
Cell Rep ; 39(9): 110897, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35649381

ABSTRACT

Influenza viruses circulated at very low levels during the beginning of the COVID-19 pandemic, and population immunity against these viruses is low. An H3N2 strain (3C.2a1b.2a2) with a hemagglutinin (HA) that has several substitutions relative to the 2021-22 H3N2 vaccine strain is dominating the 2021-22 Northern Hemisphere influenza season. Here, we show that one of these substitutions eliminates a key glycosylation site on HA and alters sialic acid binding. Using glycan array profiling, we show that the 3C.2a1b.2a2 H3 maintains binding to an extended biantennary sialoside and replicates to high titers in human airway cells. We find that antibodies elicited by the 2021-22 Northern Hemisphere influenza vaccine poorly neutralize the 3C.2a1b.2a2 H3N2 strain. Together, these data indicate that 3C.2a1b.2a2 H3N2 viruses efficiently replicate in human cells and escape vaccine-elicited antibodies.


Subject(s)
COVID-19 , Influenza, Human , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinins , Humans , Influenza A Virus, H3N2 Subtype/genetics , Pandemics , Seasons
15.
J Am Chem Soc ; 144(21): 9302-9311, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35593593

ABSTRACT

The sialic acid-binding immunoglobulin-type lectins (Siglecs) are expressed predominantly on white blood cells and participate in immune cell recognition of self. Most Siglecs contain cytoplasmic inhibitory immunoreceptor tyrosine-based inhibitory motifs characteristic of inhibitory checkpoint co-receptors that suppress cell signaling when they are recruited to the immunological synapse of an activating receptor. Antibodies to activatory receptors typically activate immune cells by ligating the receptors on the cell surface. Here, we report that the conjugation of high affinity ligands of Siglecs to antibodies targeting activatory immune receptors can suppress receptor-mediated activation of immune cells. Indeed, B-cell activation by antibodies to the B-cell receptor IgD is dramatically suppressed by conjugation of anti-IgD with high affinity ligands of a B-cell Siglec CD22/Siglec-2. Similarly, degranulation of mast cells induced by antibodies to IgE, which ligate the IgE/FcεR1 receptor complex, is suppressed by conjugation of anti-IgE to high affinity ligands of a mast cell Siglec, CD33/Siglec-3 (CD33L). Moreover, the anti-IgE-CD33L suppresses anti-IgE-mediated systemic anaphylaxis of sensitized humanized mice and prevents anaphylaxis upon subsequent challenge with anti-IgE. The results demonstrate that attachment of ligands of inhibitory Siglecs to anti-receptor antibodies can suppress the activation of immune cells and modulate unwanted immune responses.


Subject(s)
Anaphylaxis , Sialic Acid Binding Immunoglobulin-like Lectins , Animals , Immunoglobulin E , Ligands , Lymphocyte Activation , Mice
16.
Front Immunol ; 13: 838331, 2022.
Article in English | MEDLINE | ID: mdl-35355982

ABSTRACT

The C1858T variant of the protein tyrosine phosphatase N22 (PTPN22) gene is associated with pathophysiological phenotypes in several autoimmune conditions, namely, Type 1 diabetes and autoimmune thyroiditis. The R620W variant protein, encoded by C1858T, leads to a gain of function mutation with paradoxical reduced T cell activation. We previously exploited a novel personalized immunotherapeutic approach based on siRNA delivered by liposomes (lipoplexes, LiposiRNA) that selectively inhibit variant allele expression. In this manuscript, we functionalize lipoplexes carrying siRNA for variant C1858T with a high affinity ligand of Siglec-10 (Sig10L) coupled to lipids resulting in lipoplexes (LiposiRNA-Sig10L) that enhance delivery to Siglec-10 expressing immunocytes. LiposiRNA-Sig10L lipoplexes more efficiently downregulated variant C1858T PTPN22 mRNA in PBMC of heterozygous patients than LiposiRNA without Sig10L. Following TCR engagement, LiposiRNA-Sig10L more significantly restored IL-2 secretion, known to be paradoxically reduced than in wild type patients, than unfunctionalized LiposiRNA in PBMC of heterozygous T1D patients.


Subject(s)
Diabetes Mellitus, Type 1 , Protein Tyrosine Phosphatase, Non-Receptor Type 22 , Autoimmunity , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/therapy , Humans , Immunologic Factors , Immunotherapy , Leukocytes, Mononuclear/metabolism , N-Acetylneuraminic Acid , Phosphoric Monoester Hydrolases , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 22/metabolism , RNA, Small Interfering/genetics , Sialic Acid Binding Immunoglobulin-like Lectins
17.
Cell Rep ; 38(11): 110512, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35294874

ABSTRACT

Germinal centers (GCs) are essential for antibody affinity maturation. GC B cells have a unique repertoire of cell surface glycans compared with naive B cells, yet functional roles for changes in glycosylation in the GC have yet to be ascribed. Detection of GCs by the antibody GL7 reflects a downregulation in ligands for CD22, an inhibitory co-receptor of the B cell receptor. To test a functional role for downregulation of CD22 ligands in the GC, we generate a mouse model that maintains CD22 ligands on GC B cells. With this model, we demonstrate that glycan remodeling plays a critical role in the maintenance of B cells in the GC. Sustained expression of CD22 ligands induces higher levels of apoptosis in GC B cells, reduces memory B cell and plasma cell output, and delays affinity maturation of antibodies. These defects are CD22 dependent, demonstrating that downregulation of CD22 ligands on B cells plays a critical function in the GC.


Subject(s)
Germinal Center , Receptors, Antigen, B-Cell , Animals , B-Lymphocytes , Glycosylation , Ligands , Mice , Polysaccharides/metabolism , Receptors, Antigen, B-Cell/metabolism
18.
Anal Chem ; 93(40): 13651-13657, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34597027

ABSTRACT

Viruses can evade the host immune system by displaying numerous glycans on their surface "spike-proteins" that cover immune epitopes. We have developed an ultrasensitive "single-pot" method to assess glycan occupancy and the extent of glycan processing from high-mannose to complex forms at each N-glycosylation site. Though aimed at characterizing glycosylation of viral spike-proteins as potential vaccines, this method is applicable for the analysis of site-specific glycosylation of any glycoprotein.


Subject(s)
Epitopes/chemistry , Glycoproteins/chemistry , Mannose , Polysaccharides , Viral Fusion Proteins/chemistry , Glycosylation
19.
ACS Cent Sci ; 7(9): 1508-1515, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34584952

ABSTRACT

Effector T cells comprise the cellular arm of the adaptive immune system and are essential for mounting immune responses against pathogens and cancer. To reach effector status, costimulation through CD28 is required. Here, we report that sialic acid-containing glycans on the surface of both T cells and APCs are alternative ligands of CD28 that compete with binding to its well-documented activatory ligand CD80 on the APC, resulting in attenuated costimulation. Removal of sialic acids enhances antigen-mediated activation of naïve T cells and also increases the revival of effector T cells made hypofunctional or exhausted via chronic viral infection. This occurs through a mechanism that is synergistic with antibody blockade of the inhibitory PD-1 axis. These results reveal a previously unrecognized role of sialic acid ligands in attenuation of CD28-mediated costimulation of T cells.

20.
ACS Cent Sci ; 7(8): 1338-1346, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34471678

ABSTRACT

Sialic acid-binding immunoglobulin-like lectins, also known as Siglecs, have recently been designated as glyco-immune checkpoints. Through their interactions with sialylated glycan ligands overexpressed on tumor cells, inhibitory Siglecs on innate and adaptive immune cells modulate signaling cascades to restrain anti-tumor immune responses. However, the elucidation of the mechanisms underlying these processes is just beginning. We find that when human natural killer (NK) cells attack tumor cells, glycan remodeling occurs on the target cells at the immunological synapse. This remodeling occurs through both the transfer of sialylated glycans from NK cells to target tumor cells and the accumulation of de novo synthesized sialosides on the tumor cells. The functionalization of NK cells with a high-affinity ligand of Siglec-7 leads to multifaceted consequences in modulating a Siglec-7-regulated NK-activation. At high levels of ligand, an enzymatically added Siglec-7 ligand suppresses NK cytotoxicity through the recruitment of Siglec-7 to an immune synapse, whereas at low levels of ligand an enzymatically added Siglec-7 ligand triggers the release of Siglec-7 from the cell surface into the culture medium, preventing a Siglec-7-mediated inhibition of NK cytotoxicity. These results suggest that a glycan engineering of NK cells may provide a means to boost NK effector functions for related applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...